
MATH 245 S21, Exam 1 Solutions

2. Prove or disprove: If a is an even integer, then a3

4 must be even.

The statement is true, and here is a direct proof. Suppose that a is an even integer. Now, there must

be some integer b with a = 2b. Now, a3

4 = (2b)3

4 = 8b3

4 = 2b3. Note that b3 must be a integer, being the

product of integers b, b, b. Hence, a3

4 is twice an integer, so it must be even.

3. Let p, q be propositions. Simplify the following expression as much as possible (where only basic propo-
sitions are negated): ¬(p↔ q).

Applying Theorem 2.17 to p↔ q, we find that our proposition is equivalent to ¬((p→ q) ∧ (q → p)).
We apply De Morgan’s Law to get (¬(p→ q)) ∨ (¬(q → p)). We can now finish in two different ways.

METHOD 1: Apply Thm 2.16 twice, to get (p ∧ ¬q) ∨ (q ∧ ¬p).
METHOD 2: Apply Conditional Interpretation twice, to get (¬(q ∨ ¬p)) ∨ (¬(p ∨ ¬q)). Apply De
Morgan’s Law twice to get ((¬q) ∧ ¬¬p) ∨ ((¬p) ∧ ¬¬q). Lastly, apply Double Negation twice to get
((¬q) ∧ p) ∨ ((¬p) ∧ q).

4. Let p, q, r, s be propositions. Prove p→ (q ∨ r), q → s, r → s ` p→ s.

We begin by assuming thatp→ (q ∨ r), q → s, and r → s are all true. Most proofs will have cases.
SOLUTION 1: We break into cases depending on if s is true or false. If s is true, then p → s is true
trivially. If s is false, then ¬r by modus tollens with r → s. Also, if s is false, then ¬q by modus
tollens with q → s. By conjunction, (¬r) ∧ (¬q). By De Morgan’s Law, ¬(r ∨ q). Then ¬p by modus
tollens with p→ (q ∨ r). Finally, p→ s is true vacuously.

SOLUTION 2: Applying conditional interpretation to p→ (q ∨ r), we get q ∨ r ∨¬p. This gives three
cases. Case q: We get s by modus ponens with q → s, so p→ s is true trivially. Cased r: we get s by
modus ponens with r → s, so p→ s is again true trivially. Case ¬p: Now p→ s is true vacuously.

SOLUTION 3: It is also possible to do this with a huge truth table (9 columns, 16 rows!). Unless you
don’t mind spending half the exam time on one problem, this is not recommended.

5. Prove or disprove: For all p ∈ N, if p2 is prime then p is prime.
The statement is true. All correct solutions must consider p = 1 separately from p > 1, and prove that
p2 is not prime using Definition 1.16.

SOLUTION 1: vacuous proof. We will prove that p2 is never prime. There are two cases, either p = 1
or p > 1. If p = 1 then p2 = 1, and so p2 is not prime (primes must be integers at least 2). If instead
p > 1, then there exists an integer p with 1 < p < p2 and p|p2, so p2 is composite and hence not prime.

SOLUTION 2: contrapositive proof. Suppose that p is not prime. Hence either p = 1, or there is some
a ∈ N with 1 < a < p and a|p. In the case p = 1, then p2 = 1, so p2 is not prime. In the other case,
there must be some b ∈ N with p = ab. Then, we have p2 = a(bp). Hence a|p2, and also 1 < a < p2,
so p2 is composite and hence not prime. In both cases, p2 is not prime.

6. Prove or disprove: ∀x ∈ N, ∃y ∈ Q, |x− y| = |y|.
The statement is true. Let x ∈ N be arbitrary. Choose y = x

2 , which must be in Q. Now
|x− y| = |x− x

2 | = |
x
2 | = |y|. Hence |x− y| = |y|.

7. Prove or disprove: ∀x ∈ N, ∃y ∈ N, |x− y| = |y|.
The statement is false. Choose x = 1, and let y ∈ N be arbitrary. Because y ≥ 1, 1−y ≤ 0, so we have
|x− y| = |1− y| = −(1− y) = y− 1. But also |y| = y, since y ≥ 0. Now y 6= y− 1, hence |x− y| 6= |y|.

Comparing the last two questions, we see that the difference is whether y is allowed to be rational or
not. If x = 1, we need to make y = 1

2 to make the two absolute values equal.


