MATH 245 S21, Exam 1 Solutions

2. Prove or disprove: If a is an even integer, then % must be even.
The statement is true, and here is a direct proof. Suppose that a is an even integer. Now, there must
be some integer b with a = 2b. Now, @ _ (207 _ % = 2b3. Note that b® must be a integer, being the
product of integers b, b, b. Hence, % is twice an integer, so it must be even.
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3. Let p,q be propositions. Simplify the following expression as much as possible (where only basic propo-
sitions are negated): —(p <> q).
Applying Theorem 2.17 to p <+ ¢, we find that our proposition is equivalent to =((p — ¢q) A (¢ — p)).
We apply De Morgan’s Law to get (—(p — q)) V (=(¢ — p)). We can now finish in two different ways.

METHOD 1: Apply Thm 2.16 twice, to get (p A =q) V (¢ A —p).

METHOD 2: Apply Conditional Interpretation twice, to get (=(¢ V —p)) V (=(p V —=q)). Apply De
Morgan’s Law twice to get ((—q) A =—p) V ((—p) A =—q). Lastly, apply Double Negation twice to get
((=q) Ap) vV ((=p) A ).

4. Let p,q,r, s be propositions. Prove p — (¢V r),q — s,7 — sk p — s.
We begin by assuming thatp — (¢ V' 7),q — s, and r — s are all true. Most proofs will have cases.
SOLUTION 1: We break into cases depending on if s is true or false. If s is true, then p — s is true
trivially. If s is false, then —r by modus tollens with » — s. Also, if s is false, then —¢ by modus
tollens with ¢ — s. By conjunction, (=) A (—¢). By De Morgan’s Law, —(r V ¢). Then —p by modus
tollens with p — (¢ V r). Finally, p — s is true vacuously.

SOLUTION 2: Applying conditional interpretation to p — (¢ V 1), we get ¢ V rV —p. This gives three
cases. Case ¢q: We get s by modus ponens with ¢ — s, so p — s is true trivially. Cased r: we get s by
modus ponens with » — s, so p — s is again true trivially. Case —p: Now p — s is true vacuously.

SOLUTION 3: It is also possible to do this with a huge truth table (9 columns, 16 rows!). Unless you
don’t mind spending half the exam time on one problem, this is not recommended.

5. Prove or disprove: For all p € N, if p? is prime then p is prime.
The statement is true. All correct solutions must consider p = 1 separately from p > 1, and prove that
p? is not prime using Definition 1.16.

SOLUTION 1: vacuous proof. We will prove that p? is never prime. There are two cases, either p = 1
or p> 1. If p=1 then p? = 1, and so p? is not prime (primes must be integers at least 2). If instead
p > 1, then there exists an integer p with 1 < p < p? and p|p?, so p? is composite and hence not prime.

SOLUTION 2: contrapositive proof. Suppose that p is not prime. Hence either p = 1, or there is some
a € Nwith 1 < a < p and alp. In the case p = 1, then p? = 1, so p? is not prime. In the other case,
there must be some b € N with p = ab. Then, we have p? = a(bp). Hence a|p?, and also 1 < a < p?,
so p? is composite and hence not prime. In both cases, p? is not prime.

6. Prove or disprove: Vz € N, 3y € Q, |z —y| = |y|.
The statement is true. Let x € N be arbitrary. Choose y = §, which must be in Q. Now
[z —yl = [z — 3| =[3] = [y|. Hence |z —y[ = [yl.

7. Prove or disprove: Vz € N, Jy € N, |z —y| = |y|.
The statement is false. Choose x = 1, and let y € N be arbitrary. Because y > 1, 1 —y < 0, so we have
lt —yl=1]1—y|=—-(1—y) =y—1. But also |y| =y, since y > 0. Now y # y — 1, hence |x —y| # |y|.

Comparing the last two questions, we see that the difference is whether y is allowed to be rational or
not. If z =1, we need to make y = % to make the two absolute values equal.



